MATH106 2019 January Week 3 Discussion Latest

Question # 00718512 Posted By: katetutor Updated on: 03/19/2019 05:06 AM Due on: 03/19/2019
Subject Education Topic General Education Tutorials:
Question
Dot Image

MATH 106 6383 Finite Mathematics (2192)

Week 3 Discussion

AUGMENTED MATRIX METHOD TO SOLVE SYSTEM OF LINEAR EQUATIONS  (Precalculus, Section 9.7)

For the following exercises, write the augmented matrix for the linear system.

  1. 8x−37y=8       2x+12y=3
  2. 2x−3y=−95x+4y=58
  3. 6x+2y=−43x+4y=−17
  4. 2x+3y=12  4x+y=14

For the following exercises, solve the system by Gaussian elimination.

  1. 100030
  2. 124536
  3. -20   0211
  4. 6234-4-17
  5. -4-33-5-2-13
  6.     3   4-6-8   12-24
  7. 111015204365

For the following exercises, set up the augmented matrix that describes the situation, and solve for the desired solution.

  1. Every day, a cupcake store sells 5,000 cupcakes in chocolate and vanilla flavors. If the chocolate flavor is 3 times as popular as the vanilla flavor, how many of each cupcake sell per day?

 

  1. At a competing cupcake store, $4,520 worth of cupcakes are sold daily. The chocolate cupcakes cost $2.25 and the red velvet cupcakes cost $1.75. If the total number of cupcakes sold per day is 2,200, how many of each flavor are sold each day?

 

 

  1. You invested $10,000 into two accounts: one that has simple 3% interest, the other with 2.5% interest. If your total interest payment after one year was $283.50, how much was in each account after the year passed?

 

GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES  (Basic Mathematics Review, Section 7.8)

 

For the followingexercises, graph the inequalities and show (shade in) the solution region.

  1. y x +2

 

 

  1. y <−12x +3

 

 

  1. 2x + 3y ≤ – 6

 

 

  1. 2x +5y ≥20

 

 

  1.     – 4x + 3y ≥ 12

 

 

  1.     3x>– 12

 

 

  1.      7y≤  21

 

 

  1. x +4y> 4

 

 

 

GRAPHING SYSTEMS OF LINEAR INEQUALITIES IN TWO VARIABLES  ( Course Module 1, Topic II)

For the followingexercises, graph the system of inequalities.   Show (by shading in) the feasible region.

  1. y ≤ – x +2   ,   y≥ – 5x + 2

 

 

  1. 4x + y<2  ,y> – 2

 

  1. 3x + 2y  ≥  2   ,   x + 2y  ≤  2

 

 

  1. 4x +3y >  – 9    ,    2x – 3y  ≤  – 9

 

  1. 5x + 2y ≤  – 4    ,     x + 2y< 4

 

  1. x  ≥  0    ,     y  ≥  0

 

 

For the followingexercises, graph the system of inequalities.   Show (by shading in) the feasible region.  Identify the ordered-pair “corner points” that define the feasible region.

  1. 3x + 2y≥10   ,   2x + 3y  ≥  10   ,   x ≥ 0   ,   y ≥ 0

 

 

  1. 4x + ≤16  ,   x – 3y≤  – 9    ,   x  ≥  0    ,   y  ≥  0

 

  1. 4x + y  ≥  8   ,   x + y  ≤  5  ,   x  ≥  0   ,   y  ≥  0

 

 

  1. ≤5    ,   xy ≤0  ,   x  ≥  0    ,   y  ≥  0

 

  1. 2x + 5y≥20    ,     x ≤5    ,    y  ≤  5   ,   x  ≥  0    ,   y  ≥  0

 

  1. x  +  y  ≥  4   ,    x  +  2y  ≥  5    , x  ≥  0    ,     y  ≥  0

 

 

 

 

 

 

 

Dot Image
Tutorials for this Question
  1. Tutorial # 00718852 Posted By: katetutor Posted on: 03/19/2019 05:07 AM
    Puchased By: 2
    Tutorial Preview
    The solution of UMUC MATH106 2019 January Week 3 Discussion Latest...
    Attachments
    MATH106_Week_3_Discussion_Latest_2019_February.zip (951.46 KB)

Great! We have found the solution of this question!

Whatsapp Lisa