Question
Offered Price $30.00

GB513- Business Analytics (Kaplan Univ)

Question # 00006849
Subject: Mathematics
Due on: 01/19/2014
Posted On: 01/19/2014 05:43 AM

Rating:
4.1/5
Expert tutors with experiences and qualities
Posted By
Best Tutors for school students, college students
Questions:
15725
Tutorials:
15374
Feedback Score:

Purchase it
Report this Question as Inappropriate
Question

GB513-Unit 5 Business Analytics (Kaplan Univ)

Unit 5 [GB513 –Business Analytics]

Assignment- This assignment requires you to use Excel. Make sure to use the Assignment 5 template found in your online course when you turn in your answers.

Question 1: Determine the error for each of the following forecasts. Compute MAD and MSE. Period Value Forecast Error

1 202 — —

2 191 202

3 173 192

4 169 181

5 171 174

6 175 172

7 182 174

8 196 179

9 204 189

10 219 198

11 227 211

Question 2: The U.S. Census Bureau publishes data on factory orders for all manufacturing, durable goods, and nondurable goods industries. Shown here are factory orders in the United States over a 13-year period ($ billion).

a. Use these data to develop forecasts for the years 6 through 13 using a 5-year moving average.

b. Use these data to develop forecasts for the years 6 through 13 using a 5-year weighted moving average. Weight the most recent year by 6, the previous year by 4, the year before that by 2, and the other years by 1.

c. Compute the errors of the forecasts in parts (a) and (b) and then the MAD. Which forecast is

better?

Year Factory Orders ($ billion)

1 2,512.7

2 2,739.2

3 2,874.9

4 2,934.1

5 2,865.7

6 2,978.5

7 3,092.4

8 3,356.8

9 3,607.6

10 3,749.3

11 3,952.0

12 3,949.0

13 4,137.0

Question 3: The “Economic Report to the President of the United States” included data on the amounts of manufacturers’ new and un filled orders in millions of dollars. Shown here are the figures for new

orders over a 21-year period. Use Excel to develop a regression model to fit the trend effects for

these data. Use a linear model and then try a quadratic model. How well does either model fit the

data?

Year Total Number of New Orders

1 55,022

2 55,921

3 64,1 82

4 76,003

5 87,327

6 85,139

7 99,513

8 115,109

9 131,629

10 147,604

11 156,359

12 168,025

13 162,140

14 175,451

15 192,879

16 195,706

17 195,204

18 209,389

19 227,025

20 240,758

21 243,643

Provide error for each forecast by computing Mean

Absolute Deviation (MAD) for Q1 5

Provide error for each forecast by computing Mean

Square Error (MSE) for Q1 5

Used data in Q2 (a) to develop forecasts for the years 6 through 13 using a 5-year moving average 3

Used data in Q2 (b) to develop forecasts for the years 6 through 13 using a 5-year weighted moving average 3

In the summary tables below, insert only the answers. You will show work after the summary section.

Unit 5 Assignment Answers by (Insert your name here)

Question 1 : MAD

MSE

Question 2 :

MAD for part a

MAD for part b

Recommended forecast method:

Question 3

R-squared for Linear model

R-squared for quadratic model

Regression formula for linear model

Regression formula for quadratic model

Work

Show all your work for the questions below.

Question 1 Show the errors you calculated

Question 2 Show the two forecasts and the errors

Question 3 Show the regression output tables

Tags univ kaplan analytics busine gb513 model forecasts data years forecast develop 5year moving orders regreion error using quadratic linear period average factory aignment year weighted errors goods summary shown computing united answers rsquared formula excel

Tutorials for this Question
Available for
$30.00

GB513-Unit 5 Business Analytics (Kaplan Univ) with Answers

Tutorial # 00006565
Posted On: 01/19/2014 05:45 AM
Posted By:
Best Tutors for school students, college students expertden
Expert tutors with experiences and qualities
Questions:
15725
Tutorials:
15374
Feedback Score:
Report this Tutorial as Inappropriate
Tutorial Preview …Unit x Assignment xxxxxxx In the xxxxxxx tables below, xxxxxx only xxx xxxxxxx You xxxx show…
Attachments
GB513-_Business_Analytics_-Kaplan_Univ_with_Solutions.doc (377 KB)
Preview: f8,7mf8,7T xxxxxxxxxx nk9kVGywmmw xxxxxxxxxxxxxxxxxx xOs6C(6m BynSlMa7le/r)l xx merDAQ 9 xxxxx l9l)DxTIbi xxxxxxxxxxxxxxx xxxxxxxxx kaoxTcYL/qSD,)t xxxxxxxxxxxxxxxx dJZ Tfg_tZDZntGezu7uqheI8cIUmhCmLv6Kt2pJVqkm53_Lmtpmo xxxxx iyalxUmojDEw,aFtNc,C9yrXx8Daj1u(KtTtnHWxBLk)no88D/uNtT5p/l 9xDB4(QnD3xxfi5nqkEZ_zJtXtZ/rkNhxXFguvf8/6GGE1frn9S_8ugWehcPpNhBGRc xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Tutuq,X1GJOUnNaqPMURtQCZ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxx nJ7VU7OWE1QnVtokRxuCiODUb xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx cggDEZ2Din(uuS4g2@bO,RWwgZCnfx/7Zfq 7JRwMa()5uqjBgIWpzDs)G7 xxx j3JcBbWuuqYkV1@OKkg/0 jJyauYhynPs xxxxxxxxxxxxxxx EzGprVsmoZ1i(piss xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx b6i xxx puT2g@jtuZa/1Y(nj2hi26g@tu yLI,lk xxxx wF3ZTu6ia/W_f7,Wez f5qT7Y xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 9MXslXv4nvz)WGN-E x xxxxx pYn x 9pYn cCa-lmdOOq xxxxxxxxxxxxxxxxx tOXfb,W969Nx2VnKls(jcCa-l 9pYn xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx WF-KLs-f8,7s-f8,7mDcl9l)966mJcl9l6MaP6flisrmlZTnKJUo2mo8M6u/qaC-l xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx 9pYVlbl9lrSl9lrSslvvjjTDPFs-nGgWAxyWsXl9/6T xxxx 6by)l 6bI/6mXlu_xShYs xxxxxx riE16l6W67s MaS xxxxxxxx N7/lpIl_rio-G xxxxxxxx xxx 9s_nrSl9l/V7l6_HmKclUDsp5- xxxxxx NsF76-0viXE-3 Y, xxxxxxx I_TS 1EZBmU/xYy5g/GMGeD3Vqq8K)fw9 xxxxxxxxxxxxxxxxxx u3KGnD1NIBs xxxx xxxxxx V xxxxxx (W uV4(Tn xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx DU4p MDBJlC5 xxxxxxxxxxxxxxxxxxxxxxxxx xJZp/P,)KQk5qpN8KGbe xxxx xxxx 6Q xxxxxxxxx targetNamespacehttp//schemas microsoft xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx maroottrue mafieldsID411a9f11d7affe8e00e8a366c591507c xxxx ns3_ xxxxxxxxxxxxxxxxx xx org/2001/XMLSchema xxxxxxxxxxxxxxxx w3 org/2001/XMLSchema xxxxxxxxxxxxxxxxxxx microsoft com/office/2006/metadata/properties xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xmlnsns372c70878-6332-42b0-a651-e2075688fd3d xxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xsdimport xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xsdelement nameproperties xxxxxxxxxxxxxx xsdsequence xsdelement xxxxxxxxxxxxxxxxxxxxxx xsdcomplexType xxxxxx xxxxxxxxxx refns2Document_x0020_Type xxxxxxxxxxx xsdelement refns2Term_x0020__x0028_ex_x003a__x0020_0904A_x0029_ xxxxxxxxxxx xsdelement refns2School xxxxxxxxxxx xsdelement xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xsdelement xxxxxxxxxxxxxxxxxxxxxxxxx minOccurs0/ xsdelement xxxxxxxxxxxx minOccurs0/ xsdelement xxxxxxxxxx minOccurs0/ xxxxxxxxxx xxxxxxxxxxxx minOccurs0/ xxxxxxxxxx refns2OIE_x0020_Updated minOccurs0/ xxxxxxxxxx refns3CourseVersion minOccurs0/ xxxxxxx /xsdcomplexType xxxxxxxxxxx xxxxxxxxxxxx /xsdcomplexType xxxxxxxxxxx /xsdschema xsdschema xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx elementFormDefaultqualified xmlnsxsdhttp//www xx org/2001/XMLSchema xxxxxxxxxxxxxxxx xx org/2001/XMLSchema xxxxxxxxxxxxxxxxxxxxx microsoft com/office/2006/documentManagement/types xxxxxxxxxxxxxxxxxxxx microsoft com/office/infopath/2007/PartnerContr.....
gb513.xls (62 KB)
Preview not available.
Purchase this Tutorial @ $30.00 *
* - Additional Paypal / Transaction Handling Fee (3.9% of Tutorial price + $0.30) applicable
Loading...