EE 456: Power System Analysis I

Homework 1:
Due September 9, 2015 for on-site students, and September 11, 2015 for distance learning students

Distance learning students: please email your scanned homework to TA (Yunshan Xu, yunshanx@iastate.edu)

1. The electric current and voltage at one terminal of a single phase transmission line are:

$$
\begin{aligned}
& \tilde{I}=141 \cos \left(\omega t-10^{\circ}\right), A \\
& \tilde{V}=390 \cos \left(\omega t+5^{\circ}\right), V
\end{aligned}
$$

Compute the rms values of the electric current and voltage, the complex power, and the real and reactive power flowing into the line.
2. Two single-phase ideal voltage sources are connected by a line of impedance of $0.7+j 2.4 \Omega$ as shown in Fig. 1. $V_{1}=50016.26^{\circ} \mathrm{V}$ and $V_{2}=58500^{\circ} \mathrm{V}$. Plot $\widetilde{V_{1}}, \widetilde{V}_{2}$ and $\widetilde{I_{12}}$ in a phasor diagram. Also, find the real and reactive power loss in the line.

Fig. 1
3. A single-phase inductive load consisting of R and X in series feeding from a $2400-\mathrm{V}$ rms single-phase supply absorbs 288 kW at a lagging power factor of 0.8 . Determine R and X .
4. The system shown in Fig. 2 is balanced. Assume that:
$Z=10-15^{\circ} \Omega$
$V_{c a}=208-120^{\circ} \mathrm{V}$
Find $V_{a b}, V_{b c}, V_{a n}, V_{b n}, V_{c n}, I_{a}, I_{b}$ and I_{c}

Fig. 2
5. A balanced delta-connected load consisting of a pure resistances of 18Ω per phase is in parallel with a purely resistive balanced Y-connected load of 12Ω per phase as shown in Fig. 3 . The combination is connected to a three-phase balanced supply of $346.41-\mathrm{V}$ rms (line-to-line) via a three-phase line having an inductive reactance of $j 3 \Omega$ per phase. Taking the phase voltage $V_{a n}$ as reference, determine
(a) The magnitudes of current, real power, and reactive power drawn from the supply.
(b) The line-to-neutral and the line-to-line voltage magnitudes of phase a at the combined load terminals.

Fig. 3

